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ABSTRACT

The role of acoustics in flame/vortex interactions is examined via asymptotic analysis and numeri-

cal simulation. The model consists of a one-step, irreversible Arrhenius reaction between initially

unmixed species occupying adjacent half-planes which are allowed to mix and react by convec-

tion and diffusion in the presence of an acoustic field or a time-varying pressure field of small

amplitude. The main emphasis is on the influence of the acoustics on the ignition time and flame

structure as a function of vortex Reynolds number and initial temperature differences of the reac-

tants.
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1. INTRODUCTION

Acoustic waves play a pervasive role in compressible flows even in the low Mach number limit. They

are a necessary concomitant of nonlinear interactions such as those present in turbulent flows. For instance,

the interaction of any disturbance, whether it is of the entropy or the vorticity type, with steep gradients as

in shocked flows [e.g., McKenzie and Westphal(1968), Zang, Hussaini and Bushnell (1984)] generates

acoustic waves. Chemical reactions enhance them [Toong, et al. (1974), Roberts (1978), Clarke (1985), and

Jackson, Hussaini and Ribner (1993)]. Conversely, acoustic waves can engender instability in laminar shear

flows which may eventually suffer transition to turbulence [Goldstein and Hultgren (1989)]. In reactive

flows, they play a similar critical role. It is now well established that they can significantly affect the stabil-

ity of flames [Mclntosh (1986)], the transition to detonation [Urtiew and Oppenheim (1966), Lee (1977),

Shepherd and Lee (1992)], etc. Oran and Gardner (1985) provide a fine review of combustion-acoustics

interactions with an emphasis on the physics rather than the mathematical analysis and techniques.

In the present study, the role of acoustics in the flame/vortex interaction process is investigated. In

order to provide a proper perspective, the literature on the flame/vortex interaction problem is briefly

reviewed here. This problem was first formulated by Marble (1985) to model one of the basic physical

mechanisms underlying the complex processes of turbulent diffusion flames or combustion in vortex-

dominated flows. The model consists of a diffusion flame with fast chemical kinetics (along the horizontal

axis separating two reactants occupying the upper and lower half-planes) which is distorted by a vortex with

its center at the origin. The theoretical results have established that the flame sheet is rolled up into a spiral

around the vortex on the convection time scale forming a reacted core, and then spreads across the spirals

on the diffusion time scale; the growth rate of the reacted viscous core obeys a similarity law as well as the

reactant-consumption rate which is independent of time. These physical features are confirmed by numeri-

cal simulations [Laverdant and Candel (1988), Rehm, Baum, Lozier and Aronson (1989), and Norton

(1983)] implying, thereby, that the inclusion of shear (which was neglected by Marble) or finite-rate chemis-

try does not alter the qualitative picture. The premixed combustion in a vortex also displays similar features

[Peters and Williams (1988)].

The aforementioned studies assume the simultaneous existence of a flame and a vortex and the subse-

quent evolution. Thus, they preclude the ignition regime which is the main thrust of Macaraeg, Jackson and

Hussaini's work (1992). Their work is based on the assumption of a constant density, one-step Arrhenius

reaction between the fuel and the oxidizer, occupying adjacent half spaces, in the presence of a vortex with

its center on the axis of demarcation between the reactants. Theft study focuses on the ignition time, loca-

tion and the flame structure as a function of the vortex Reynolds number and the initial temperature

differences of the reactants. In the absence of the vortex, the problem, of course, reduces to the classical

case of Linan and Crespo (1976) who analyzed the continuous temporal evolution of such a configuration

from nearly frozen flow to near equilibrium flow. The reactants mix by diffusion until, at some finite time, a

thermal explosion occurs at a well defined location, and ignition takes place. After ignition, a pair of

deflagration waves (or premixed flamelets) emerge according to classical thermal explosion theory. These

premixed flamelets are quite weak in that the temperature rise associated with them is small, and they exist

only until all of the deficient reactant is consumed. Just beyond the deflagration waves, a diffusion flame

regime exists where the mixing process is governed by diffusion in the direction normal to the flame. As

time increases, the diffusion flame approaches a flame sheet. We note that the existence of a well defined

ignition point and the premixed flamelets depends critically on the relative magnitudes of the two initial
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temperaturesto thatof theadiabaticdiffusionflarnetemperature.Thatis,if theadiabaticdiffusionflame
temperatureis greaterthaneitherinitialtemperature,a welldefinedignitionpointalwaysoccurs,followed
by thepremixedflamelets.Ontheotherhand,if theadiabaticdiffusionflametemperatureis betweenthe
two initial temperatures,thereis no well definedignitionpoint,anda singlepremixedflamemerges
smoothlyintothediffusionflame.Thisconfigurationof atriple-flame(ortribrachialflame)appearstobeof
sucha fundamentalnaturethatit alsoexistsinsteadysupersonicreactinglaminarmixinglayers[e.g.,Jack-
sonandHussaini(1988),GroschandJackson(1991)]andflamespropagatingintoa nonuniformmixture
[e.g.,BuckmasterandMat,alon(1988);Dold(1989,1991)].

Theinitial presenceof a vortex,altersthepictureconsiderably[Macaraeg,JacksonandHussalni
(1992)].First,a hotspotdevelops within the viscous core of the vortex and evolves into an almost circular

flame which grows with time according to a similarity rule and so does the reactant-consumption rate, ,as in

the case of Marble. Next, the Linan and Crespo scenario or the tribrachial flame configuration must evolve

at infinite distance to the right and left of the origin. The diffusion flames emanating from this configuration

then moves toward and finally merges with the flame in the reacted core region. The above picture is only

valid for the case when the adiabatic flame temperature is greater than either of the two initial temperatures.

When the adiabatic flame temperature lies between the initial temperatures, a well defined ignition point

does not occur, but rather the premixed region merges smoothly into the diffusion flame region, independent

of the vortex Reynolds number. This scenario is consistent with the Linan and Crespo analysis.

The presence of an acoustic field or time-dependent pressure perturbation affects both the ignition and

the flame structure. To investigate the ignition regime, an asymptotic theory is developed here which holds

strictly for near-equal temperatures of the reactants. For low frequencies of a time periodic pressure pertur-

bation, ignition can be accelerated or significantly delayed depending on the phase. For moderate to high

frequencies ignition is always enhanced. An approximation based on homogeneous ignition theory is given

which predict these trends very well, and therefore is proposed as a good engineering approximation for

obtaining the ignition times for the more complicated flow fields. For the complete time evolution from

nearly frozen flow to near equilibrium flow, an asymptotic analysis based on small heat release is employed.

In this limit, direct numerical simulations show that acoustics have little effect on the flow field in the vor-

tex core, while the flow outside the core oscillates. It is believed that viscosity in the reacted core damps out

the acoustic field.

In the next section the problem is formulated. Section 3 presents an analysis of the ignition regime,

valid only for near equal initial temperatures of the reactants, using a combination of large activation energy

(and, hence, large Zeldovich number) asymptotics and numerics for several different pressure profiles. The

pressure profiles chosen are either a linear, pulse, or a sinusoidal function. This last case is stressed since it

represents a single Fourier component of a more general pressure disturbance. Also in this section, the

approximation based on homogeneous ignition theory is presented. Section 4 presents selected numerical

results of the continuous evolution from nearly frozen flow to near equilibrium flow for the sinusoidal pres-

sure profile under the assumption of small heat release. A description of the diffusion flame regime is given

in Section 5 and our conclusions are presented in Section 6.

2. PROBLEM FORMULATION

In this section the problem for the time evolution of initially unmixed species occupying adjacent

half-planes which ,are then allowed to mix and react in the presence of a vortex subject to pressure
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disturbancesis formulated.Thenondimensionalequationsgoverningthisfield,assumingconstantviscous
andthermodynamicproperties,aregivenbyBuckmasterandLudford(1982)andWilliams(1985),

pT = 1 + 6Pc(t) +'[M2ff(x,Y,Z,t), (2. la)

Pt + (pu)x + (pv)y + (pw)_ = 0, (2.1b)

1
p[u, + u ux + v uy + w Uz] +fix = Sc (V2u + --4-Kx),

D

(2.1c)

1 K (2.1d)
p[v, +uvx +VVy +wv_l+Fy =Sc(V2v +-_ y),

1
p [ W t "k U W x "4- V Wy "k W Wz l "q- e z = Sc ( V2w -t--_Kz),

(2. le)

p[T, +uTx +vTy +wT_]__ )[-1 dPc
"f dt

- (]'- 1)M2 [/_ + u fix + vffy + wP z ] = V2T + (_'- 1)M2Sc O+ _, (2.10

p[Fj,t +uFj,x +vFj,y +wFj,zI=V2F) - _"_, j = 1,2, (2.1g)

f_ = Da p F I F 2e -ze /r , (2.1h)

where K = ux + vy + Wz, do is the viscous dissipation term, and V 2 is the three-dimensional Laplacian

operator. Here, (u, v,w) are the velocity components in the (x,y, z) directions, respectively; p is the den-

sity; T is the temperature; and FL and F2 the mass fractions of the fuel and oxidizer, respectively. The total

pressure P = 1 + _SPc + _'M2/7 is written as the sum of the compressible component Pc plus incompressi-

ble component/_, as is consistent with the small Mach number approximation [e.g., Majda (1984)], with 8

the amplitude of the compressible component. The actual size of _5 will be chosen in the course of the

analysis. The chemical model is assumed to be a one-step, irreversible Arrhenius reaction. The nondimen-

sional parameters appearing above are the Schmidt number Sc = v/D assumed equal for both species with

D the species diffusion coefficient and v the kinematic viscosity; the Zeldovich number Ze = E / (R ° T_)

with E the dimensional activation energy and R ° the universal gas constant; the Damkohler number Da

defined as the ratio of the characteristic time scale ta to the characteristic reaction time scale tR ; )' the ratio

of specific heats; and finally [3 the heat release per unit mass of F L,_. In specifying the Damkohler number

in the course of the analysis, the appropriate choice for the characteristic time scale is made. The density,

temperature, pressure and mass fractions were nondimensionalized by their initial values p_, T_,

P_ = p_R ° T_. and F_,_ , respectively, that would prevail if there were no pressure disturbances. The

Lewis number was assumed to be unity, which implies that Sc = Pr, where Pr = p_ Cp v/_. is the Prandtl

number, g is the thermal conductivity and Cp is the specific heat at constant pressure. Lengths and veloci-

ties are referred to the relevant diffusion characteristic scales lf = D td and Ua = la / td, respectively. In
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thiscase,theReynoldsnumberbasedon thischoiceof la and Ua is given by Re -- la Ua/v = 1/Sc. The

Mach number M is defined as Ua / a_, the ratio of the characteristic diffusion speed to the speed of sound.

The above choices for ta, la, and Ua are consistent with the scales chosen in the absence of a vortex.

An analysis of the ignition zone with acoustic interactions must take into account the two fundamental

ratios

characteristic" time, ta la / Ua
i

acoustic time, t_ la / a

N
characteristic acoustic length ia

diffusion length la

These two ratios are related via

1

NM'

where M is the Mach number defined above. Here, our analysis is based on the assumption that 'r = O (1),

and hence the acoustic wavelength is much longer than the characteristic diffusion length scale for small

Mach numbers. Thus, the pressure gradient within the combustion zone is negligibly small and the pressure

is essentially a function of time, and so the flame is treated as isobaric to an excellent approximation. In

addition, our analysis further assumes that the magnitude of the acoustic time relative to the reaction time is

given by

characteristic time, ta t_
Da = -x--.

reaction time, tR tR

Taking "r = O(1), we shall assume that the reaction time is much faster than the acoustic time, and so we

take the Damkohler number to be proportional to

e Ze
Da-

Ze,

where Ze >> 1 is the Zeldovich number defined above, thus defining the characteristic time. The exact form

is chosen in the course of the analysis. In our analysis, if the Mach number M was not chosen sma]l, we

would also need to consider spatial variations of the pressure disturbance inside the reaction zone.

Mclntosh (1986, 1989, 1991a,b, and the references cited therein) pointed out the importance of the

two fundamental ratios given above when the characteristic velocity is given by the flame speed U/. For

this case, three distinct cases of flame-acoustic interactions arise depending on the magnitude of x, and these

have been classified in Mclntosh (1991a). Further phenomena can exist depending on the magnitude of the

acoustic time/reaction time ratio, and a discussion of this can be found in Clarke (1985). For "r = O (1),

Mclntosh and Wilce (1991b) point out that audible sound and its interference with flames would come under

this category, and a considerable body of work exists using this assumption (e.g., references cited therein).

We shall now assume that the flow is independent of the downstream direction x for all time.

Although not true for any real flow situation, it is consistent with experimental observations that streamwise
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vorticalstructuresin turbulentmixinglayersareessentiallyalignedwiththeflowandareof greatextent.
Also,neglectingthex-dependency can be thought of as a local approximation for the vortices found in tur-

bulent flames. This type of approximation has also been used previously in describing the evolution of a

shear flow with an embedded streamwise vortex [Corcos (1988), Pearson and Abernathy (1984)]. We shall

also assume that the Mach number is small, as is typical for flames [e.g., Buckmaster and Ludford (1982),

Williams (1985)]. Thus, the governing equations (2.1), in the limit of small Mach number and neglecting

all dependency in x, reduce to

pT = 1 + _St'c(t), (2.2a)

9, + (9V)y + (pw), : 0, (2.2b)

p [ut + v Uy + w u_ ] = Sc V2u (2.2c)

1Ky),p [v, + v vy + w v, ] + Fy = Sc ( VZv+ -_ (2.2d)

1 K
p[w, +vwy +ww,]+F, =Sc(V2w +-_ _), (2.2e)

9 [ T_ + v Ty + w Tz ] - _ -_ - 1 dPc _ V2 T + _ _, (2.2f)
y dt

p[Fj,,+vFj,y+wFj,,]=V2Fj-fL j = 1,2, (2.2g)

where V 2 = ( )yy + ( )= is the two-dimensional Laplacian operator, K = vy + w_, and we have considered

the distinguished limit M 2 << 8 << 1. Since we are interested in reacting flows with vortical motion, we

transform (2.2) into cylindrical coordinates (y,z)_ (r,0) by using the transformations y = r cos0 and

z = r sin0. If we define g to be the radial velocity and h to be the tangential velocity, i.e.,

v = g cos0 - h sin0 and w = g sin0 + h cos0, then (2.2) transforms to

p T = 1 + _)Pc (t ), (2.3a)

p, + (pg), + l(ph)e + -P-g--= O, (2.3b)
r r

p[ut +gur + h u° ] =Sc V_u, (2.3c)
/-

P[gt + g gr + h h 2
r gO - -7-" ] + F, = Sc I g 2 1 ]V2g r2 r2 he + "_ Kr (2.3d)
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I 11 (2.3e)

1 dP¢
p[T_ +g Tr + "To] -_5 - V2T + [_, (2.30

r 7 dt

p[Fjt+gFj,r+hFjo]=V2F)-_, j = 1,2,
' r

(2.3g)

where V 2 is now the two-dimensional Laplacian operator in cylindrical coordinates, ,and

K = gr + g/r + ho/r. The system (2.3) must be solved subject to appropriate boundary ,and initial condi-

tions.

Since it is known that small pressure disturbances of O (Ze-l) can cause O (1) changes in certain flame

properties such as the burning rate, extinction, transition from laminar to turbulence, etc. [Buckmaster and

Ludford (1982), Buckmaster (1992), Kapila (1992)], we shall limit our attention to small pressure distur-

bances by defining for the total pressure

P = 1 +Ze-l-----Z--Pc(t)+ O(M2), 5- _---Ze-I;
y-1 y-1

(2.4)

the factor Y/(7- 1) in the definition of _5 was chosen for convenience. Thus, we are concerned with

0 (Ze -1) acoustic perturbations superimposed on a basic state. The pressure perturbation Pc (t) can be deter-

mined by solving the acoustic equations in the outer field [e.g., Van Harten, Kapila and Matkowsky (1984)],

and indicates that the pressure can be controlled, for example, from the surroundings. A general expression

for Pc can be found in Majda (1984) and will depend on the type of conditions imposed on the geometry

under consideration. Since we are interested in the influence of pressure variations on the flame, we will

not solve this outer problem and, henceforth, consider the pressure disturbance Pc to be prescribed.

We note here that it is the density which couples the momentum equations to the temperature ,and

mass fraction equations. As such, the numerical solution to the full system (2.3) is a formidable task. One

approximation which will simplify (2.3) to a more tractable system is the assumption of small heat release

[e.g., Van Harten, Kapila and Matkowsky (1984)]. The resulting system can then be solved numerically, and

will be presented in Section 4. For the ignition problem, the assumption of small heat release is not needed

in order to simplify the system, provided we restrict the analysis to near equal initial temperatures, and

hence, densities, of the two gases. This analysis is presented in the following section.

3. IGNITION

At time t = 0, the reaction rate is exactly zero owing to the product FtF2 = 0. For t > 0, the fuel and

oxidizer begin to mix by diffusion, as well as by convection due to the presence of the vortex, and the reac-

tion rate is no longer zero. For small time, it can thus reasonably be assumed that the effect of the reaction

on the overall flow field is small. The solution for small time in which the reaction rate term is neglected is

known as the inert or chemically frozen solution, and will be denoted by the superscript I. In what follows,

we only consider the case of near equal initial temperatures. This assumption leads to the inert solutions
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TI= p1= 1 + O(Ze-l), where the O(Ze -1) term is included to allow for small initial temperature

differences that might exist in the absence of any pressure disturbances. Thus, the leading-order inert solu-

tion corresponds to the constant density approximation prevalent in the combustion literature. As time

increases, more of the combustible mixes until, at some finite time, a thermal explosion occurs characterized

by significant departure from the inert. To analyze the ignition process, we determine the effect of the grow-

ing reaction rate by expanding about the inert solution as

T=l+Ze-l[Tl+Pc(t)]+O(Ze-2), p=l+Ze-lpt+O(Ze-Z), Fj=FJ+O(Ze-I), (3.1)

u = u t + O(Ze-l), g = gl + O(Ze-1), h = h t + O(Ze-1), (3.2)

and take the asymptotic limit Ze _ ,,_. The leading-order equations are given by

Pl + Tl- 1 Pc(t), (3.3a)
7-1

g[+lhto + gt =0, (3.3b)
r r

h !
u[ + gl I -- ulo =Sc V2u 1ur + , (3.3c)

iv

hl l hi2 + pr = Sc l V2gl - gl - 2--_-hlo] (3.3d)
g[ + gt g] +--z g° ----r-- L jr2r2 '

h' gl ht l [ v2h , ht 2 ]
hi + gt hI + -- hto + + -- fro = Sc - + gto

r r r --7 -_ '
(3.3e)

h I + Pc(t)
Tl,t +gtTt,r +--Tl,o=V2Tl+AF_ F_e rl , (3.30

r

i

FJ, _I F t h t V 2 t
t -[- _ j.r + --_-'F),0 = Fj, j = 1,2, (3.3g)

where we have chosen the Damkohler number Da to be

m eZe,
Da = .-_ (3.4)

and A is some constant that will be chosen in the course of the analysis. This particular choice of the Dam-

kohler number ensures that a distinguished limit exists, in that the reaction rate term is of the same order in

a Zeldovich number expansion as the time derivative terms [see, e.g., Buckmaster and Ludford (1982)].

Note that the pressure disturbance now appears in the exponential and thus, will play a crucial role in the
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ignitionprocess.

Wefirstseethatthecontinuityandmomentumequations(3.3b-e)aredecoupledfromtherestof the
systemandthus,will completelydetermineu t , gl, h / and/7. At t = 0, we situate a point vortex at the ori-

gin and allow it to diffuse under the action of viscosity. Then, assuming the flow in the (r, 0) plane to be

axisymmetric, the induced flow field is given by [Lamb, 1932]

gl _- 0, ht = R S.______Lc[1 - exp(-r2/4t Sc)], (3.5)
F

/7(r,t) =-i hlZ (---F't) d'f', (3.6)
r Ir

and u t is found from the equation

u[ + hI I Sc V2u I. (3.7)
UO =

The solution (3.5)-(3.6) is the solution for the incompressible Oseen vortex, where R = F/2_v is the vortex

Reynolds number and F is the circulation parameter. The vortex Reynolds number R is considered as a free

parameter and its choice determines the importance of the vortex in the initial mixing of the reactants.

When R = 0 (i.e., F = 0), there is no vortex and the initially separated reactants mix by diffusion only.

When the vortex Reynolds number R is non-zero, the initially separated reactants mix by diffusion and con-

vection. The solution to (3.7) has been discussed previously in the context of streamwise-spanwise vorticity

interactions for nonreacting flows [Corcos (1988), Pearson and Abernathy (1984)]. Note that u I does not

appear in the temperature or mass fraction equations since we neglected variations in x coupled with the

zero Mach number approximation, and so the analysis is valid for either streamwise or spanwise vortices.

The velocity component u I will influence the temperature equation if true compressibility effects are taken

into account; such will necessarily occur after ignition has taken place.

With gt and h I now known, the following equations can be solved for TI and FJ

ht V 2 F_ F_ e T' , (3.8)Tl,t + --Tl,o = TI +A +PcCt)
F

h I
FJ,, + -- FI.o = V 2FJ,

r

The appropriate boundary and initial conditions are given by

T l = O, V_ = I, Ft2 = 0 at

TI = _r, F_ = O, F12 - F2._ = O#-'
FI,.

j = 1,2. (3.9)

t =0, r >0,0<0<g, and t >0, r ---_,,o, 0<0<_,

at t =0, r >0, rc<0<2n,

and t > 0, r ---) ,,,,, rc < 0 < 2re, (3.10)
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where_ is theequivalenceratiodefinedastheratioof theinitialmassfractionof thefuelF 1,_ to the initial

mass fraction of the oxidizer F2,_, and I_T is the parameter which allows for small initial temperature

differences in the absence of pressure disturbances. If (_ = 1, the mixture is said to be stoichiometric; if

> 1 it is fuel rich; and if _ < 1, it is fuel lean. Also, if [_r is less than zero, the oxidizer (species 2) is

relatively cold compared to the fuel (species 1); and if 13T is greater than zero, it is relatively hot. As t

increases, the solution for TI becomes unbounded at some finite time (tlg) and location (Yig, zig). This

characterizes the ignition regime. The special case R = 0, in which two initially unmixed species are

allowed to diffuse without the mixing generated by the vortex, will be discussed in subsection 3.1, while the

case for R > 0 will be presented in 3.2. Finally, with TI determined, the density perturbation Pl can be

found from (3.3a).

3.1. R = 0. In the absence of ,any vortical motion, the governing equations reduce to the

reactive-diffusion equations

+ Pc(t)
Tl, , = TLz z + A F_ F_ e T_ , (3.11)

FJ,,=FJ._, j = 1,2,

subject to the boundary and initial conditions

T,=0, F_ =I,F_=0

T,=tT, F_ =0, F_ =_-'

The parabolic equations for the mass fractions can be integrated to yield

F_ = °d, F_ = _-l (1 - W),

(3.12)

at t =0, z >0, and t >0, z --->,,o, (3.13a)

at t =O,z <0, and t >O,z --_-oo. (3.13b)

(3.14)

where

1

W = _(1 + erf "0), (3.15)

and _ is the similarity variable, defined as

z (3.16)
_- 2G-"

Upon substituting the inert solutions into the temperature perturbation equation, and transforming to the

similarity plane, a single equation for T 1 emerges, given by

+ Pc(t)
4t TLt - TL_ _ - 2"0 Tl.n = 4t W(1 - _t')e rl , (3.17)

which must be solved numerically subject to the boundary and initial conditions
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Tl=0 at t =0, z >0, and T>0, z --4,,o, (3.18a)

TI=[JT at t =0,,- <0, and T>0, z --4-oo. (3.18b)

Here, the constant A appearing in the definition of the Damkohler number has been chosen to be _ for con-

venience. The special case of no pressure disturbance (Pc = 0) corresponds to the results of Linan and

Crespo (1976) which has been discussed in the Introduction. Thus, the results of this subsection can be

thought of as an extension of the Linan and Crespo problem to include pressure disturbances. In the follow-

ing subsections we will select three different pressure variations, and compare with the results of Linan and

Crespo. The first two choices for the pressure variation presented below corresponds to the choices taken by

Ledder and Kapila (1991) in their study of the response of premixed flames to pressure perturbations. The

last choice will be a sinusoidal pressure variation, which represents a single Fourier component of a more

general pressure disturbance.

3.1.1. LINEAR PRESSURE DECREASE Let the flow be subject to a linear pressure decrease at

t = 0 of the form

Pc (t ) = - co t, (3.19)

where 1 / co > 0 charactererizes the time scale of the pressure disturbance. The influence of this linear pres-

sure profile on premixed flames has been discussed by Ledder and Kapila (1991), in which extinction was

seen to occur for all values of co. This profile was chosen for this study because of its simplicity in form in

that the ignition time and location will only be a function of the parameters co and 13r, and also may

represent the first term in a Taylor Series expansion of a more general pressure disturbance. Figure 1 is a

plot of the maximum of T t versus t for several values of 03 and l_r = 0. The case 03 = 0 corresponds to that

of Linan and Crespo (1976) in which no pressure disturbance is present. As 0_ is increased from zero, the

ignition time also increases until, at some finite value co- 03c = 0.1395, the ignition time is pushed to

infinity. Thus, sm,'dl values of 03 can significantly delay ignition. For values of 03 greater than oc, the

maximum of T t initially increases, reaches a maximum, then begins to decrease back to zero as time

increases further. Thus, ignition does not occur in the classic,'d sense. Mathematically, when the pressure

disturbance becomes large and negative, the nonlinear source term of (3.17) becomes exponentially small

and so can be neglected; T_ then evolves according to a homogeneous heat equation. Mthough the solution

of this system suggests that ignition will not occur for co greater than coc, we note that the presence of an

infinite amount of fuel and oxidizer necessitate that ignition will eventually take place. Asymptotically, the

expansion (2.4) breaks down when t is of the order O (Ze), and a new expansion must be employed, one

which allows O(1) changes in the pressure and the temperature; the waves now cease to be acoustic in

nature. The leading-order system in this case is no longer that with constant density, and hence, the full sys-

tem (2.3) must be solved numerically. This numerical problem is beyond the scope of the present study.

Figure 2 is a plot of the ignition time lig versus (0 for three values of the temperature ratio parameter lit.

The case of lIT -- 0 was presented in a slightly different manner in Figure 1. Here, it is clear that as co

approaches 0.1395 from below, the ignition time goes to infinity, and for co greater than 0.1395 there is no

ignition. The case ¢0 = 0 corresponds to that of Linan and Crespo (1974); ignition time increases as 13T is

decreased from zero (F2_ is relatively cold compared to F l,_), and decreases as 13T is increased from zero.

For each value of the temperature ratio parameter, a critical value of co is seen to exist; this value being less

than 0.1395 for negative [3T and greater than 0.1395 for positive values of 13r. In the absence of any
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pressuredisturbance,LinanandCrespohaveshownthatignitiontakesplacealongalineparalleltothey-

axis which is located at zig = 0 for 13r = 0 and resides in the hotter region for 13r 4: 0. In the presence of the

linear pressure disturbance and for 137-= 0, ignition always occurs along the line zig = 0 for any value of co.

However, for [_r ¢ 0, the ignition line z = Zig (zig < 0 for _- > 0, and zig > 0 for 1_7 < 0) moves toward the

line z = 0 as to is increased.

3.1.2. PRESSURE PULSE Let the flow be subject to a pressure pulse at t = 0 of the form

Pc(t) = 4PA (2 -_t2 -- 2-2_2), (3.20)

where to-_/2 > 0 is the pulse width and ] Pa[ is the ,amplitude of the pressure pulse. This corresponds to a

smooth increase beginning at zero, increasing or decreasing to an exlremum IPa[ at to t2 = 1, and finally

returning to zero. The influence of this pressure pulse on premixed flames has been discussed by Ledder

and Kapila (1991), in which extinction is seen to occur for both negative and positive amplitudes, depending

upon the parameters of the problem. Figure 3 is a plot of ignition time rig versus to for various values of the

amplitude Pa with 137 = 0. The case of Pa = 0 corresponds to that of Linan and Crespo (1976) and is

shown in the figure as a dashed line for reference. In addition, all data curves shown in this figure begin at

tie = 5.816 at to -- 0, again consistent with the results of Linan and Crespo. For fixed PA < 0, the ignition

time initially increases as to increases from zero, reaches a maximum, and then begins to decrease as to is

increased further, reaching an asymptote as to --->_. For fixed to, decreasing the pressure amplitude from

zero increases the ignition time. Thus, ignition is delayed for negative pressures. In contrast to the previous

case, for a positive pressure pulse, the ignition time decreases monotonically as to is increased from zero

and asymptotes to a finite non-zero value as to _ ,_,; hence, ignition is enhanced. Since 13r -- 0, ignition

takes place along a line parallel to the y-axis located at zie = 0 for any value of PA and to. The general

behaviour described in Figure 3 for 13r = 0 is seen to hold for any value of 137-,the only exception being the

starting value of tie at to = 0; for _r < 0, the starting value is above that given in the figure, while for

_r > 0 it is below. In addition, the location of the ignition line resides in the hotter region and moves

toward z = 0 as to is increased from zero for fixed PA.

An interesting feature is seen to occur as PA is further decreased below -2. This is shown in Figure 4

where we plot tie versus to for Pa = -4 and _r = 0. The ignition time increases slowly up to about

to = 0.0018, where a sudden jump in tig occurs. As to increases still further, the ignition time reaches a

maximum and then begins to decay slowly, reaching an asymptote as to --->,_. To better explain this jump

phenomenon, we plot in Figure 5 the maximum of T_ versus time for several values of co. Note that there

is a sudden jump in the ignition time between to = 0.0018 and co = 0.002. For values of co below 0.0018,

the maximum temperature perturbation is seen to increase monotonically, becoming infinite as t approaches

tig. For values of to greater than about 0.0018, the maximum temperature perturbation increases at first,

decreases slightly, and then increases sharply and becomes unbounded as t --->t_e. In the region where the

maximum decreases, the pressure disturbance dominates in the exponent of (3.17), yielding a region where

the chemical activity is suppressed, and so the temperature evolves according to a homogeneous heat equa-

tion; this parallels that of the linear pressure case. However, unlike the linear pressure case, the pulse does

not grow unbounded, but instead reaches a minimum and then increases back to zero. Thus, there exists

some finite time at which the pressure no longer dominates the exponent, and the problem begins to once

again evolve according to classical thermal explosion theory. A comparison of the pressure pulse and
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maximumtemperatureperturbationisprovidedinFigure6 foroneselectedvalueof 03.Notethatthemax-
imumin T l decreases over most of the pressure pulse, ,and that the temperature again rises once the pressure

increases to some critical value. Finally, we note here that the above behaviour was seen to occur numeri-

cally for all pressure amplitudes less than about -2.8, and also occurs for non-zero values of [_r.

3.1.3. SINUSO1DAL PRESSURE VARIATION

variation at t = 0 of the form

Let the flow be subject to a sinusoidal pressure

Pc(t) = Pa sin(03t + q_), (3.21)

where co > 0 is the frequency, PA is the amplitude, and • is the phase of the pressure variation. This profile

was chosen since it can be regarded as a single Fourier mode of a more general pressure disturbance. Figure

7(a,b,c) are plots of tig versus the phase angle q_ for PA = 1, 2, 4, respectively, and for various values of 03

with _r = 0. The case of PA = 0 corresponds to that of Linan and Crespo (1976) and is shown in each

figure as a dashed line for reference. We begin by noting that there are several important features which

are common to all three figures. These are: (i) the maximum ignition time at a fixed amplitude corresponds

to zero frequency with a phase angle greater than n (corresponding to an initial negative pressure wave),

and that this maximum decreases and shifts to lower phase angles as co is increased from zero; (ii) for fre-

quencies co = 1 and greater, the ignition time always lies below that of the dashed line for any phase angle

and amplitude, indicating that ignition is enhanced over the zero pressure disturbance case; and (iii) for the

high frequency range (03 > 5), the ignition time is approximately a constant over the entire range of phase

,angles, and that this constant value decreases as the pressure amplitude Pa increases.

The same interesting feature that occurred for the pressure pulse case is also seen to occur for the

sinusoidal pressure case, in that the ignition time undergoes a sudden jump in its value for cert,ain combina-

tions of amplitude, frequency, and phase. This jump phenomenon in the ignition time is clearly shown in

Figure 7c for PA = 4. For the curves 03 _>0.1, the ignition time drops slowly as q_ is increased from zero,

reaches a minimum, and then begins to increase slowly as q_ is increased further until a critical value of

is reached, where the ignition time then undergoes a sudden jump in its value. As qJ increases still further,

the ignition time reaches a maximum and then begins to decrease back to its original value at _ = 0. To

better explain this jump phenomenon, we plot in Figure 8 the maximum of Tl versus time for PA = 4,

03 = 0.1 and • = _. The corresponding pressure wave is displayed as the dashed curve. In the region where

the maximum temperature perturbation is almost constant, the pressure disturbance dominates in the

exponent of (3.17) yielding a region where the chemical activity is suppressed, and so the temperature

evolves according to a homogeneous heat equation, and ignition is delayed. As the pressure rises to some

critical value, chemical activity resumes and ignition soon takes place according to classical thermal explo-

sion theory.

Figures 9 and 10 show that regions of chemical inactivity can exist in the ignition regime even in the

high frequency limit. Figure 9 shows the maximum of T_ as a function of time for Pa = 2, 03 = 5, and

q_ = re/10, while Figure 10 is a similar graph except now 03 = 10. In each graph, the corresponding pres-

sure variation is shown as a dashed curve. Note that there are now several regions where the maximum

temperature perturbation decreases and hence chemical activity is suppressed, with the pressure variation

being negative in each of those regions.
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Finally,wenoteherethatthegeneralbehavioursdescribedin Figures 7-10 for 13r = 0 are seen to

occur for any value of 13r. The only exception being for [3r < 0, the ignition time is greater than that given

for 13= 0, while for 13r > 0 it is less.

3.2. R > 0. When vortical motion is taken into account, the governing reactive convection-

diffusion equations for the temperature and mass fraction perturbations are

R Sc
TI,, + -"7 [1 - exp(-r2/4t Sc)] Tz,o = V_TI + _F_ Ft2 e rl +Pc(O,

(3.22)

R Sc
FJ., +--[1-exp(-r2/4tSc)]FJo =V2F t, j= 1,2,

1,2

(3.23)

subject to the conditions (3.10). This system was solved numerically for a range of R, 13r = 0, Sc = _ = 1,

and with an assumed form for the pressure variation term Pc (t). Implementation of boundary conditions is

facilitated if the system is recast in Cartesian coordinates. The solution technique is a 2nd-order finite

difference scheme on a nonuniform mesh. To resolve the structure in the core region of the field, a coordi-

nate stretching is used. To avoid the singularity at the origin, no mesh points are placed there. The outer

boundaries are set at 50 or 200 in the y-direction, and 20 or 50 in the z-direction. Grid resolution studies

which at least doubled the computational mesh were carried out to ensure that structures were well resolved.

The resolutions required ranged from a 642 mesh to a 2562 mesh for large vortex Reynolds number. The

time-stepping scheme is a four-stage Runge-Kutta which is formally 2nd-order but has an extended stability

region making it accurate and robust for moderately stiff problems. All runs were performed on a Cray

YMP.

As t increases, the solution for T 1 becomes unbounded at some finite time (tie , ) and location (Yig, zig).

This characterizes the ignition regime. The special case R = 0, in which two initially unmixed species are

allowed to diffuse without the mixing generated by the vortex, has been presented in subsection 3.1. For this

case, ignition takes place along a line parallel to the y-axis which is located at zig = 0 for [_r = 0 and

resides in the hotter region for 13r ¢ 0. For R > 0, previous work [Macaraeg, Jackson, and Hussaini (1992)]

has shown, in the absence of a pressure disturbance, that ignition occurs at a point rather than along an

entire line. The ignition point is located at the origin for [_T = 0 and for any value of R, and resides in the

hotter region for _r ;_ 0. For 13r ¢ 0, the ignition location spirals clockwise towards the viscous core center

as R is increased from zero, with ignition taking place within the core for R > 70.

To determine the combined effects of the vortex and a pressure disturbance on the ignition time, we

produce here selected results using the sinusoidal pressure function (3.21) for Pc (t). In all calculations, we

fix Sc = q = 1 and _r = 0, and vary the parameters Pa, R, 03, and _. Since Igr = 0 and R > 0, ignition

will occur in the vortex center. Figure ll(a,b) are plots of tig versus the phase angle • for PA = 2 and 4,

respectively, and for vortex Reynolds number R = 0 (solid) and R = 100 (dash) with 03 = 0.5. The results

with R = 0 (solid) are taken from Figure 7 and given here as a reference when R > 0. From Figure 11 we

see that the effect of increasing R decreases slightly the ignition time for any phase. This is consistent with

previous results obtained when pressure disturbances was ignored [Macaraeg, Jackson, and Hussalni (1992)].
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To illustratethestructurein the high frequency limit, we plot in Figures 12 and 13 the maximum of

the temperature perturbation T_ ,as a function of time for to = 5 and 10, respectively, and for various values

of the vortex Reynolds number R with Pa = 2, • = rt/10, and _r = 0. The special case of R = 0 was pre-

viously shown in Figures 9 ,and 10, respectively, and is used here as a reference case for when R > 0. In

both figures, the structure is similar to the R = 0 case, except that increasing R decreases the ignition time

slightly until about R = 100, when the ignition time remains constant as R is increased further. As stated

earlier, the temperature maximum always occurs in the vortex center.

z

z

3.3. APPROXIMATION FOR THE IGNITION TIME. Since a certain amount of mixing must

take place before ignition, a surprisingly good approximation to the ignition time in the presence of a pres-

sure disturbance can be found by considering the "homogeneous" problem

dTl 1

dt ti°
eT1 + Pc(t) , (3.24)

where the factor ti° is the ignition time in the absence of a pressure disturbance chosen to be the Linan and

Crespo (1976) result, which accounts for the role that diffusion plays in the mixing of the reactants as well

as the role that the initial temperature profile plays. For 13T =-2, 0, and 2, we find that ti° = 13.1961,

5.8285, and 1.7736, respectively, for our choice of the time scales (3.4). Integrating (3.24), we find that

[ 11 feP_t)dt .T l =-In 1 - -?-6-j
fig o

(3.25)

Ignition takes place when the quantity in the brackets of (3.25) vanishes; that is, the "homogeneous" ignition

time ti_ is given implicitly by the equation

H
rig

e _'_(x)d x = ti0 .
(3.26)

In tile ai_sence of a pressure disturbancel PC(t) = 0 and therefore tig = ti°. Below we give selected com-

parisons between the ignition times predicted by this "homogeneous" theory and by the full numerical solu-

tions of the previous subsections.

First, consider the simple linear pressure profile given by (3.19). Substitution into (3.26) yields for the

approximate ignition time

ti_ ; -1 In [ 1 - to ti° ]. (3.27)
to

Note that (3.27), in addition to defining the approximate ignition time, also approximates the critical value

of to for which ignition can take place. That is, ignition occurs for 0 < to < ton, where ton = 1 / t° is the

critical value; for to > ton, ignition does not take place. In Figure 14(a) we plot the ignition times for the

numerical solutions of subsection 3.1.1 (solid) and the approximate solutions (dashed) for 13r = -2, 0, and 2

,as a function of to. For each I]r, note that the approximate ignition limes comp,'ue rather well to that of the
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full solutions.Nowconsiderthesinusoidalpressurefunctiongivenby(3.21).For this case, (3.26) must be

solved implicitly for ti_ for fixed values of PA, 03, • and [3r. In Figures 14(b,c) we plot the ignition times

for the numerical solutions of subsection 3.1.3 (solid) and the approximate solutions (dashed) as a function

of phase _ and for PA = 4, 03 = 0.1 and ira = 4, 0) = 0.5, respectively, with 13r = 0. In each figure note how

well the approximate ignition times compare to the ignition times of the full numerical problem. Thus, we

see that our theory of "homogeneous" ignition predicts surprisingly well the true ignition times. Finally, we

note here that our definition of the "homogeneous" ignition time can also be used to predict ignition when

vortical motion is present, since ignition times vary little with vortex Reynolds number R.

4. DIRECT NUMERICAL SIMULATION

To investigate post-ignition events up to the development of a flame sheet, the direct numerical solu-

tion to (2.3) is necessary. Unfortunately, as mentioned above, the numerical solution to the full system (2.3)

presents a formidable task. One approximation which will simplify (2.3) to a more tractable system and has

often ,appeared in the literature is the assumption of small heat release [e.g., Matkowsky and Sivashinsky

(1979); Van Harten, Kapila and Matkowsky (1984)]. The resulting system can then be solved numerically.

We begin the analysis of small heat release by assuming 13<< 1. The temperature and density must now be

rescaled according to

r-) l + 13(r + ?_q)), p--> I + l_p, (4.1)

while the other variables remain unchanged. To leading-order in _, the system (2.3) reduces to

R Sc [1
Tt + --_ - exp(-r2/4t Sc)]To = V2T + dd_,-lFIF2e z(r+t'c(t)) (4.2)

R Sc _ _T + Pc (t))

Fi: +--_-[1-exp(-r2/4tSc)]Fi,o=V2Fi-_,-1FiF2e , j = 1,2, (4.3)

for the temperature and mass fractions, while the leading order solution to the continuity and momentum

equations (2.3b)-(2.3e) is the incompressible vortex solution (3.5)-(3.7). The density can be found from the

gas law. In the above equations, k = _Ze is the product of the heat release parameter and Zeldovich

number, 8 = 13U(_'- 1), and (3.4) with A = _ has been used in the definition of the Damkohler number.

Finally, we note here that by using the definition (4.1) for the temperature, we have subtracted out the time

varying part due to pressure fluctuations; that is, if T oscillates at any point in the flow field, it will be due

solely to the nonlinear source term in (4.2).

The system (4.2)-(4.3) must be solved numerically subject to the boundary and initial conditions

T=0, F l= 1, F2=0

T=_T, F1 =0,F2=_b -1

at t =0, r >0,0<0<_, and t >0, r -__>oo, 0<0<rr, (4.4a)

at t =0, r >0,_<0<27r, and t >0, r --->,,_,1r<0<2_. (4.4b)

This system was solved by the finite difference scheme mentioned in Section 3. To illustrate the numeric,'d

solution of the continuous evolution from nearly frozen flow to near equilibrium flow, we produce here

selected results using the sinusoidal pressure function (3.21) for P_(t). In all calculations we take



- 16-

Sc = _ = 1 and _r = O.

To investigate the combined effects of a pressure disturbance and of vortical motion on the structure

of the full solution, we begin by examining the structure in the absence of these effects. Figure 15(a) is a

plot of the maximum values of T as a function of time forR = 0, Pc(t) = 0 and _. = 1, 0.1 and 0.01. Since

[3r = 0 and R = 0, this maximum occurs ,along the line z = 0. For X = 1, the temperature increases gradu-

,ally from zero at t = 0 to T = 0.5 as t --->,,_; this maximum value corresponding to the flame sheet value

given in the next section. As X decreases from one, the rise in temperature near t = 0 increases sharply,

indicating the existence of a well-defined ignition regime. An interesting trend develops if pressure fluctua-

tions ,are now included. In Figure 15(b) we plot the maximum values of the temperature as a function of

time for R = 0 and for the sinusoidal pressure function (3.21) with PA = 4, 0_ = .5 and qb = 1.25_x. For

_. = 1 and 0.1, the temperature rises from t = 0 to a maximum value slightly below the flame sheet value Of

0.5, and then begins to oscillate in time with decreasing amplitude; as t --->,_,, the oscillations die out and

the temperature maximum approaches the value 0.5. As _. is decreased from 0.1 to 0.01, ignition takes

place so rapidly that the acoustic field is seen to have almost no effect on the temperature field. The

absence of any effect due to pressure disturbances is consistent with the flame sheet solution presented in

the following section. A surprising phenomenon occurs when vortical motion is included. In Figure 15(c)

we again plot the maximum values of the temperature as a function of time, again for _. = 1, 0.1 ,and 0.01,

with R = 50 ,and the same pressure profile as in Figure 15(b). Since 13r = 0 and R > 0, this maximum

occurs in the vortex center. Note that for all three values of _, the temperature profile evolves in time with

little influence from the pressure field. That is, the temperature within the viscous core, once it reaches a

maximum, remains almost constant with time, indicating that viscous effects damp out the acoustics. In con-

trast, we show in Figure 16 the maximum temperature at the origin (solid) and the maximum temperature

far away from the core (dashed) as a function of time for the same conditions as in Figure 15(c) with X = 1.

From this figure we see that, although the temperature within the core remains almost constant with time,

the outer flow is oscillating. This is consistent with Figure 15(b), since the outer flow does not feel the

influence of the vortex so that the acoustic field has a noticeable effect. Finally, the oscillations in the outer

flow will eventually die out, consistent with the flame sheet solution given in the next section.

5. DIFFUSION FLAME REGIME

After ignition has taken place, a thin diffusion flame exists and is characterized by a chemical reaction

time that is much smaller than a characteristic diffusion time. Chemical reactions then occur in a narrow

zone between the fuel and the oxidizer, where the concentrations of both reactants are very small.

Mathematically, the assumption of very fast chemical reaction rates leads to the limit of infinite Damkohler

number which reduces the diffusion flame to a flame sheet (i.e., local chemical equilibrium). This assump-

tion significantly reduces the complexity of the problem since it eliminates the analysis associated with the

chemical kinetics. For many flows, the assumption of local chemical equilibrium adequately predicts the

location and the shape of the diffusion flarfie [Buckmaster and Ludford (1982); Williams (1985)]. For finite

values of the Damkohler number, equations (4.2) must be solved numerically, and this was done in the pre-

vious section.

We begin the description of the diffusion flame regime by defining the following conserved variables

[see, e.g., Williams (1985)]:



- 17-

T + FI = I]7" + (1 - Jlr)Z, (5.1)

T + F2 = (13r + qb-L) (1 - Z), (5.2)

F I - F2 + ¢-_
Z=

1 + qb-l '

where Z is the mixture mass fraction and satisfies the convection-diffusion equation

(5.3)

R Sc
Zt + 7 [1 - exp(-r2/4t Sc)]Zo = V2Z,

(5.4)

subject to the initial and boundary conditions

Z=I at t =0, r>0,0<0<Tr,

Z =0 at t =0, r >0, x<0<2n,

and t >0, r--hoo, 0<0<rc,

and t >0, r ---_,,¢,n< 0 <2rc.

(5.5a)

(5.5b)

In the limit _ _ 0 (i.e., infinite Damkohler number) the flame sheet solution is given by

El = 1 - (1 + q_-l) (1 - Z), F2 = 0, (5.6a)

T = (fit + qb-l) (1 - Z), (5.6b)

valid for Z > Z z , and

F 1 = O, F2 = ¢-1 _ (1 + d_-l)Z, (5.7a)

T = 13r+ (1 - 13r)Z, (5.7b)

valid for Z < Zy. Here, Zz defines the location of the flame sheet where both the reactants vanish, given by

the implicit relation

1

zz = 1 +----_-' (5.8a)

and T takes the adiabatic flame value

I+_T¢
r: -- 1 +------X-- (5.8b)

Note that the flame location is independent of 13r and I]. Once Z = Z (r, 0, t) is known, then the other vari-

ables (T,FI,F2) can be found from (5.6)-(5.7). We remark here that if 13r = 0 and d?= 1, then T/ = 0.5,

which is consistent with Figures 15-16. We also note that the flame sheet structure ,and position is
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independentof thepressuredisturbancePc(t), again consistent with Figures 15-16 in the limit t ---) ,,o.

As mentioned in the Introduction, equation (5.4) for Z is exactly Marble's problem [Marble (1985)]

when ignition events ,are ignored (i.e., the vortex is turned on at t = 0 with the initial configuration given by

the flame sheet), though derived for order one heat release ,and with the constant density approximation, ,and

was solved numerically by Laverdant ,and Candel (1988) and Rehm, Baum, Lozier and Aronson (1989).

6. CONCLUSIONS

The problem of a flame interacting with a vortex is supposed to model certain fundamental mechan-

isms of turbulent diffusion flames which form the basis of many propulsion devices. Acoustic waves are

,always present in these combustion systems, so that it is important to study the role of acoustics in such

flarne/vortex interactions. Having said this, we refrain from ,any further comment on the implications of the

present study to practical applications.

The present study ,assumes a one-step, irreversible Arrhenius reaction between initially unmixed

species occupying adjacent h,'df-planes which ,are allowed to mix and react by convection ,and diffusion in

the presence or absence of a vortex, and investigates the influence of the acoustic field (spatially uniform

but time dependent pressure waves of small amplitude) on the ignition time and flame structure which are

functions of vortex Reynolds number, initial temperature difference of the reactants, equivalence ratio and

Schmidt numbers.

In the case of zero vortex Reynolds number ,and near equal initial temperatures of the reactants, this

study concludes that the low frequency pressure waves ,accelerate or decelerate ignition depending on the

phase; the pressure waves with moderate to high frequencies ,always enhance ignition and are essentially

independent of phase. Another key result is that the simple theory of homogeneous ignition developed in

this study is found to predict these trends very well, and therefore it is proposed as a good engineering

approximation for obtaining the ignition times for the more complicated flow fields. When vortical motion

was included, the overall ignition time decreases slightly and then asymptotes to a finite value with increas-

ing vortex Reynolds number, consistent with previous results obtained by ignoring acoustics [Macaraeg,

Jackson, and Hussaini (1992)]. While the asymptotic analysis is confined to incipient ignition, a direct

numerical simulation is carried out to investigate post ignition events. This is limited by the small heat

release assumption. Relaxing this rather drastically restrictive assumption is worth a serious attempt. An

important conclusion from the numerical investigation is that acoustics has little effect on the flow field in

the vortex core, while the flow outside the core oscillates. It is believed that viscosity in the reacted core

damps out the acoustic field.
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